
2024/03/08 11:53 1/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

Tiger Programmable Logic Card (TGPLC)

ASI's Programmable Logic Card (PLC) is a field-programmable card for digital logic, sort of a mini-FPGA
inside the Tiger controller. It acts as a single axis device (by default, axis E) and occupies one Tiger
address (e.g. 36 in a diSPIM TG-16). Its original use is to enable multi-laser control for diSPIM, but it is
designed to be very flexible and can be used for other tasks involving digital signals.

The original PDF from which this document was created is here. This wiki version is the most up to
date in the case of any discrepancy.

Overview

The PLC has 8 accessible I/Os in the form of BNC connectors on the front panel, as well as connections
to the Tiger backplane TTL lines (used in diSPIM for camera triggers and inter-card communication).
The PLC also has an array of 16 programmable logic cells1); each logic cell has up to 4 inputs 2). Inputs
to each cell are selectable from the outputs of any logic cell, BNC inputs, and the Tiger backplane.
Cell outputs can be routed to the BNC connectors or to the Tiger backplane. The core of each cell is a
user-programmable logic element; possibilities include combinatorial logic, flip flops, programmable
one-shot and delay elements. As of February 2015 there are 15 different types of cells available.

The PLC periodically runs an evaluation cycle. During each evaluation cycle, the card does the
following:

Updates external I/Os with the outputs from the prior evaluation cycle 3)1.
Samples all inputs synchronously 4)2.
Computes the new outputs one cell at a time, starting with cell 1 and proceeding to cell 16. The3.
computed outputs won't be available on the external I/Os until the start of the next evaluation
cycle, but importantly the changed output of a cell can affect a later numbered cell in the same
cycle. For example, if cell 2 uses the output of cell 1, there will be no apparent delay, but if cell
1 uses the output of cell 2 then it won't be updated until the next evaluation cycle.

The evaluation cycle is triggered by a clock signal. By default, the evaluation clock comes from an
4kHz source on the PLC. It is also possible for the clock to be provided by another Tiger card for
synchronization purposes, e.g. for diSPIM the micro-mirror card is the source of the signals being
output by the PLC (e.g. camera triggers) so the micro-mirror is the master and its 4kHz clock is used
to trigger PLC evaluations. Finally, the user can provide a clock on the first BNC input. Note that there
is an delay of one evaluation cycle because the outputs are updated at the start of the evaluation
cycle; this is an intentional design choice so that the output timing is deterministic. Thus, an input
signal with arbitrary phase relative to the evaluation clock is output with a delay between 1 and 2
times the period of the evaluation cycle clock.

Programming

The configuration of each cell can be changed by sending serial commands to the card. This can be
done by either setting the entire card configuration to one of several presets or by sequentially
setting the configuration of each cell. The configuration of the entire card is saved by executing a

http://www.asiimaging.com/downloads/manuals/Programmable_Logic_Card.pdf


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

“save settings” operation, and need not be reprogrammed again until a different logic function is
needed. The use of each physical connector is also user-programmed; each connector can be used as
an digital input or mapped to reflect the output of any desired logic cell. Besides the 8 faceplate
connectors, there are also 8 backplane connectors for inter-card communication in the controller (e.g.
used in the diSPIM). 5)

Programming Logic Cells

To program the logic cells:

Move the axis position to the cell, e.g. (M E=10) specifies that the programming commands CCA1.
Y Z F and CCB will be applied to the cell at position 10. The current position can be queried
using W.
Execute [Addr#]CCA Y=<code> to select the type of cell. See first table below for cell types2.
and codes. Setting the cell type (even to the exact same value) clears the previously-selected
cell configuration, input selections, and state.
Execute [Addr#]CCA Z=<code> to set the cell configuration if applicable (see table). This is a3.
16-bit code that defines how the cell behaves, and its interpretation varies by cell type. Setting
the cell configuration clears the state (only applies to one-shots and delay cells).
Execute [Addr#]CCB X=<input #1> Y=<input #2> Z=<input #3> F=<input #4> to4.
set cell inputs, where the input address is from the second table. Inputs default to 0, or logic
low. Note that the logical inversion of any address is easily obtained by simply adding 64 to the
address. To obtain a rising or falling edge signal, add 128 or 192 to the address respectively.
When an address is assigned to an edge-sensitive input as marked in italics in Table 1â†‘, the
firmware automatically converts the address to the range 128-255 if it is specified by the user
in the range 0-127 (when such an input address is queried the value between 128 and 255 is
returned). It is possible to combine the edge signals using combinatorial logic combine signals
to feed to edge-sensitive inputs; e.g. to clock a flip flop when the output of cell 1 changes
(either rising or falling edge) define a 2-input OR with input addresses 129 and 193
(193=1+128+64) and use the OR gate's output to clock the flip flop. 6)

The remainder of this section discusses available cell types.

Cell codes for use with ''CCA'' and ''CCB'' commands

Trigger and clock inputs are edge-sensitive and are rendered in this font; all other inputs are level-
sensitive. If the user sets an edge-sensitive input to address 0-127 then it will automatically be set to
the corresponding edge-sensitive address 128-255. Address 192 (or 64) has a rising edge every
evaluation cycle.

Cell
Cell
Type
(CCA
Y)

Configuration (CCA
Z)

Input
#1 (CCB
X)

Input
#2
(CCB
Y)

Input
#3
(CCB
Z)

Input
#4
(CCB
F)

Has
State?

constant 0 0 for 0, 1 for 1 - - - - -
D-flop 1 - Din clock reset preset Yes
2-input LUT 2 LUT values A B - - -
3-input LUT 3 LUT values A B C - -



2024/03/08 11:53 3/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

Cell
Cell
Type
(CCA
Y)

Configuration (CCA
Z)

Input
#1 (CCB
X)

Input
#2
(CCB
Y)

Input
#3
(CCB
Z)

Input
#4
(CCB
F)

Has
State?

4-input LUT 4 LUT values A B C D -
AND2 5 - A B - - -
OR2 6 - A B - - -
XOR2 7 - A B - - -

one-shot (retriggerable) 8 duration (# clock
pulses) trigger clock reset - Yes

delay (retriggerable) 9 delay to fire (# clock
pulses) trigger clock reset - Yes

AND4 10 - A B C D -
OR4 11 - A B C D -
Synchronous D-flop 12 - Din clock reset preset Yes
JK-flop 13 - J K clock - Yes
one-shot (non-
retriggerable) 14 duration (# clock

pulses) trigger clock reset - Yes

delay (non-retriggerable) 15 delay to fire (# clock
pulses) trigger clock reset - Yes

Address codes (used with ''CCB''command as well as setting source address for physical
I/O)

Address Meaning Type
0 always 0/low constant
1-16 logic cell 1-16 logic cell
17-32 reserved for future use (expanded cell array)
33-40 front panel connectors 1-8 physical I/O
41-48 Tiger backplane TTL 0-7 physical I/O
49-63 reserved for future use (expanded I/O)
64-127 0-63 with inversion
128-191 rising edge on 0-63
192-255 falling edge on 0-63

Logic gates

The predefined cell types include some common boolean logic gates for convenience, even though
lookup tables could also be used. Two-input AND, OR, and XOR gates are provided, along with four-
input AND and OR gates. A 3-input AND can be created using a 4-input cell and setting the unused
input to address 64 (logic 1), and similarly a 3-input OR by setting the unused inputs to 0.

Lookup tables (LUT)

Lookup tables (LUTs) are used to implement arbitrary boolean logic. In the case of a 4-input LUT, the
eponymous lookup table code comprises 16 bits corresponding to the digital outputs of the 16
possible combinations of the 4 digital inputs. It is programed as the CCA Z code which ranges



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

between 0 and 65535, where the LSB (bit 0) corresponds to all inputs 0 (logic low) and the MSB (bit
15) corresponds to all inputs 1 (logic high). Bit 1 of the lookup table code is the output when Input #1
is high and the others low, bit 2 of the code is the output when Input #2 is high and the others low, bit
3 is the output when Inputs #1 and #2 are high and the others are low, etc. The 16-bit lookup table
code can be derived as follows:

input #1 (X) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
input #2 (Y) 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
input #3 (Z) 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
input #4 (F) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
output ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
weight 215 214 213 212 211 210 29 28 27 64 32 16 8 4 2 1

First determine the desired output (0 or 1) in the penultimate row of the table. This is the binary form
of the configuration code. To determine the decimal form used by the CCA Z command to program
the cell, multiply each the output by the binary weight below and sum the values. For example, with a
4-input lookup table the operation ( (X AND Y) OR (X AND Y AND Z AND F) ) is represented by the CCA
Z code of 1000100010001001 in boolean, or34953 in decimal, and would be programmed by sending
the command CCA Z=34953. The operation (Z OR F) is represented by the LUT 1111111111110000
in boolean, or 65280 in decimal.

If only 2 or 3 inputs are required it is preferred to use the 2-input or 3-input LUT versions for slightly
faster execution. For a 3-input LUT the input #4 (F) doesn't matter, and for a 2-input LUT inputs #3
and #4 (Z and F) don't matter, meaning the maximum CCA Z code would be 255 and 15 respectively.

Flip flops

The D flip-flop is a simple latch or 1-bit memory. If its reset input is high then the output is
unconditionally set low. If preset is high and reset is low, then the output is high. If both reset and
preset are low (the normal state), then the output is the input at the time the last rising edge was
seen on the clock input. The output is updated the same evaluation cycle as the clock, i.e. the D-to-Q
delay is 0. The reset and preset only require an evaluation cycle to “take,” not a clock pulse; i.e. they
act like asynchronous reset/presets.

The synchronous D-flop behaves just like the normal D-flop except the reset and preset inputs are
only sampled on the rising clock edge, acting as synchronous reset/preset.

The low-level JK-flop is helpful to build some logic structures. It has two inputs, J and K along with a
clock input. When the clock input has a rising edge, the output is updated according to its prior state
and the J and K input values. The combination J=1 and K=0 sets the output to 1, the combination J=0
and K=1 sets the output to 0, the combination J=K=1 will toggle the output value, and J=K=0 will hold
the current state.

One-shot

The output of a one-shot (also known as a monostable multivibrator) goes high for a specified
duration upon receiving a rising edge on the trigger input. The output stays high until it has detected
the user-specified number of rising edges on the clock input in later evaluation cycles (i.e. the clock



2024/03/08 11:53 5/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

input on the evaluation cycle when the trigger has a rising edge is ignored), and then its output goes
low again. The number of clock cycles, or duration, is specified as the configuration for this cell using
CCA Z (must be between 0 and 65535). Note that the clock signal is an input; if you wish it to be the
same as the clock for the PLC evaluation cycle then set input #2 to address 192 (setting to 64 has the
same result). If the duration is set to 0 then the output will never go high. If the duration is set to 1,
then the one-shot output goes high on the trigger pulse and low again at the first rising edge on the
clock input. The reset input resets the count and forces the output to be 0; it overrides the other
inputs.

There are two varieties of one-shots. The standard one is retriggerable, meaning a trigger received
while the output is high will cause the duration counter to be reset and the pulse length to be
extended. In other words, the output will go low the specified number of clock cycles after the last-
received trigger. For the non-retriggerable one-shot, the trigger input is ignored while the output is
high, so the duration will always be the same unless it is reset.

Delay

The delay cell is somewhat like the one-shot, except for its output goes high for a single clock cycle
(not evaluation cycle 7) ) some user-specified time after the initial trigger. The number of clock cycles,
or duration, before the output goes high is set by the cell's configuration (CCA Z, must be between 0
and 65535) . There is a special case if the duration is set to 0: the output will go high immediately and
low again on the next rising edge of the clock signal. If the duration is set to 1 then the output will go
high on the next rising clock edge and low again on the second rising edge. With duration of 2 then
the output goes high on the second rising edge and low again on the third edge, and so forth. If a
delay and one-shot cell are both connected to the same trigger and clock signals and have the same
configuration (duration) setting then the delay cell's output goes high the same evaluation cycle as
the one-shot's output goes low again. Like the one-shot, the clock input is ignored on the evaluation
cycle when the trigger's rising edge is received. Also like the one-shot, the reset input resets the
count and forces the output to be 0; it overrides the other inputs.

A one-shot with delay can be created by combining a one-shot cell and delay cell, with the delay cell's
output connected to the trigger signal of a one-shot cell, both running from the same clock.

The standard delay cell is retriggerable, meaning that the duration counter is reset by receipt of
another trigger so the output pulse will come the specified amount of time after the last-received
trigger. A non-retriggerable delay cell is also available, which ignores trigger pulses between the
initial trigger and the output pulse.

Configuring Physical I/Os

Physical I/Os include both the front panel BNCs and the TG-1000 backplane lines. Each has two
associated registers containing the I/O type and the source address (from which address the output
will come).

I/O type: input, open-drain output, or push-pull output

There are three types of I/Os: input, open-drain output, or push-pull output. By default the TG-1000



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

backplane I/Os are inputs and the front panel BNCs are push-pull outputs.8)

When an I/O is used as an output, it can either use the open-drain + pull-up resistor configuration or
else a push-pull configuration.

For Rev A boards, the push-pull output logic levels are fixed at approximately 0.1V and 3.2V (the
micro-controller supply voltage) and the source impedance is relatively low (typical value of 150ohm)
but not low enough to drive an accessory with 50ohm input impedance. For Rev B boards, push-pull
outputs go through a separate buffer which source at least 48mA, sufficient to drive 50 ohm TTL
levels. Also on Rev B boards, the logic high voltage for push-pull is selectable between 5V (default) or
3.3V using a jumper on the PCB and the the low logic level is less than 0.1V. 9)

Open-drain output mode can be used to allow different output logic levels but requires the addition of
an external pull-up resistor. Most users will not need to use this mode on the BNC connectors, though
it is used to communicate on the TG-1000 backplane. The logic high value should be no more than
5.5V. The maximum current sink is 100mA, but it is recommended to be much less (e.g. use 5V with a
5kohm pull-up and the current will be 10mA).

Each I/O has a pull-up or pull-down resistor on the printed circuit board to prevent the line from
floating. This resistor acts as the input impedance when the I/O is used as an input.10) TG-1000
backplane connections have 10kohm pull-up resistors to 3.3V and are usually used in open-drain
mode to communicate with other Tiger cards. The front panel BNCs each have a 27kohm resistor to
ground (for Rev A boards the value is 10kohm). Finally, there is a series resistor between the BNC
connectors and internal nodes for protection; the value is 100ohm for Rev A boards and 43ohm for
Rev B. This series resistor makes it so the output voltage is not strictly 0 when the BNCs are used in
open-drain output mode. For Rev B boards, the series resistor makes the push-pull output impedance
approximately 50ohm for impedance matching.

To specify a I/O type, first move the axis pointer to the physical I/O address and then execute a
[Addr#]CCA Y command setting Y to the I/O type code. The code is 0 for input, 1 for open-drain
output, and 2 for push-pull output 11). For example, to set the first front panel connector to be a push-
pull output, do M E=33 followed by [Addr#]CCA Y=2. This is a separate but distinct use of the CCA
Y command described in Section “Programming Logic Cells”; if the current axis position corresponds
to a logic cell address then CCA Y sets the I/O type for the physical I/O, but if the axis position is on a
logic cell then the cell type is set.

I/O type CCA Y code Comments
input 0 default for backplane
open-drain output 1
push-pull output 2 default for front panel

Physical I/O source address

The source address setting does not matter if the I/O type is an input. If it is an output, the source
address specifies from what programmable logic cell or other I/O the output will be taken from.

It is possible to assign the physical I/O source address to be another physical I/O. If the source is an
input, note that the data will be sampled when the evaluation cycle is triggered, and also remember
the fixed delay of a single clock cycle due to the evaluation cycle structure described in Section
“Overview”.



2024/03/08 11:53 7/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

To specify a source address, first move the axis pointer to the physical I/O address and then execute
a [Addr#]CCA Z command setting Z to the source address.

For example, to set the front panel #1 connector to be the output of cell 2, send M E=33 followed by
[Addr#]CCA Z=2. The logical NOT of the signal is easily obtained by simply adding 64 to the source
address, e.g. to output the logical complement of cell 2's output value send [Addr#]CCA Z=66 after
moving the axis pointer to the correct position. This is a separate but distinct use of the CCA Z
command described in Section “Programming Logic Cells”; if the current axis position corresponds to
a logic cell address then CCA Z sets the source address for the physical I/O, but if the axis position is
on a logic cell then the cell configuration is set.

Available Presets

Card presets are programmed using the [Addr#]CCA X=<preset #> command. Depending on the
preset, some or all of the cells will be changed (types, configuration, and input sources) as well as
some of the I/Os (I/O types and source addresses). The cells and outputs not used in the preset are
not affected. Thus, applying multiple presets can have a “cumulative” effect, as long as they don't
overwrite each other. After setting a preset, the cells and outputs can be further modified.

The list of presets available is shown in the table below. Additional presets can be easily added upon
request. BNC outputs are push-pull unless otherwise specified.

Preset Description Cells BNC
Outputs Firmware Usage / Notes

0 All cells set to constant 0 1-16 - 3.00+
1 Simulate original SPIM TTL card - BNC1-4 3.00+
2 Set cell 1 to constant 0 1 - 3.00+ diSPIM: not acquiring
3 Set cell 1 to constant 1 1 - 3.00+ diSPIM: acquiring

4 16-bit counter 1-16 - 3.00+ Clock input set to address
192, cell 1 is LSB toggle flop

5 BNC5 selected, turned on by
cell 10 - BNC5-8 3.04+ diSPIM: laser #1 selected

6 BNC6 selected, turned on by
cell 10 - BNC5-8 3.04+ diSPIM: laser #2 selected

7 BNC7 selected, turned on by
cell 10 - BNC5-8 3.04+ diSPIM: laser #3 selected

8 BNC8 selected, turned on by
cell 10 - BNC5-8 3.04+ diSPIM: laser #4 selected

9 BNC5-8 all turned off - BNC5-8 3.04+ diSPIM: no laser selected
10 Set cell 8 to constant 0 8 - 3.04+ diSPIM: laser disabled
11 Set cell 8 to constant 1 8 - 3.04+ diSPIM: laser enabled
12 Cell 10 as (TTL1 AND cell 8) 10 - 3.08+ diSPIM: selected laser on

13 BNC4 source as (TTL3 AND (cell
10 OR cell 1) 12 BNC4 3.06+ diSPIM: gated side output

14 diSPIM TTL 1, 8,
10, 12 BNC1-8 3.04+12) Combination of presets 1, 9,

12, 13

15 modulo 4 counter in cells 3 and
4, cell 2 as clock 3, 4 - 3.06+ diSPIM: counter for 4 lasers



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

Preset Description Cells BNC
Outputs Firmware Usage / Notes

16 modulo 3 counter in cells 3 and
4, cell 2 as clock 3-5 - 3.06+ diSPIM: counter for 3 lasers;

note also uses cell 5

17 Cell 2 is !TTL1 2 - 3.06+ diSPIM: increment count
every slice

18 Cell 2 is !TTL3 2 - 3.06+ diSPIM: increment count
every volume (side A first)

19 BNC1-8 source from cells 9-16 - BNC1-8 3.06+ Useful for testing together w/
preset 4

20 BNC5-8 source from cells 13-16 - BNC5-8 3.07+ diSPIM: laser source from cells
13-16

21
modulo 2 counter in cells 3 and
4, cell 2 as clock (cell 4 always
low)

3, 4 - 3.07+ diSPIM: counter for 2 lasers

22 no counter in cells 3 and 4
(both always low) 3, 4 - 3.07+ diSPIM: only 1 channel

23 BNC1-8 source from TTL0-7 - BNC1-8 3.09+
24 BNC3 source from cell 1 - BNC3 3.09+ diSPIM: acquisition indicator
25 BNC3 source from cell 8 - BNC3 3.09+ diSPIM: shutter indicator

26 Cell 2 is TTL3 2 - 3.10+ diSPIM: increment count
every volume (side B first)

27 BNC3 source from cell 10 - BNC3 3.17+ diSPIM: laser on indicator

28 BNC6 and BNC7 selected,
turned on by cell 10 - BNC5-8 3.19+ diSPIM: simultaneous 2-color

29 BNC5-7 selected, turned on by
cell 10 - BNC5-8 3.19+ diSPIM: simultaneous 3-color

30 BNC5-8 selected, turned on by
cell 10 - BNC5-8 3.19+ diSPIM: simultaneous 4-color

31 BNC5 and BNC7 selected on
!TTL3, BNC6 and BNC8 on TTL3 6, 7 BNC5-8 3.19+

diSPIM: different 2 colors on
side A and B (BNC5 and BNC7
for side A)

32 BNC1 and BNC2 set as cameras
A and B BNC1-2 3.19+ subset of preset 1

33 BNC1 and BNC2 set as OR of
internal camera A and B signal 9 BNC1-2 3.19+ diSPIM: for reflective SPIM

imaging

34 cell 11 as PLogic trigger divided
by 2 11 - 3.23+ get output clock (divided by 2

from input clock)
35 BNC3 source from cell 11 - BNC3 3.23+ output clock on BNC3

36 cell 10 set to reflect cell 8 10 - 3.27+ use shutter logic without
micro-mirror TTL1 signal

37 BNC1 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #1

selected

38 BNC2 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #2

selected

39 BNC3 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #3

selected

40 BNC4 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #4

selected



2024/03/08 11:53 9/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

Preset Description Cells BNC
Outputs Firmware Usage / Notes

41 BNC5 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #5

selected

42 BNC6 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #6

selected

43 BNC7 selected, turned on by
cell 10 - BNC1-7 3.29+ 7 channel laser: laser #7

selected

44 BNC2 and BNC4 selected,
turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #2 and

#4 selected

45 BNC3 and BNC5 selected,
turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #3 and

#5 selected

46 BNC4 and BNC6 selected,
turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #4 and

#6 selected

47 BNC5 and BNC7 selected,
turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #4 and

#6 selected

48 BNC1 and BNC3 and BNC5
selected, turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #1 and

#3 and #5 selected

49 BNC2 and BNC4 and BNC6
selected, turned on by cell 10 - BNC1-7 3.29+ 7 channel laser: lasers #2 and

#4 and #6 selected
50 BNC1-7 all turned off - BNC1-7 3.29+ 7 channel laser: all lasers off

51 BNC1-8 sourced from cells
17-24 (requires 24-cell build) - BNC1-8 3.29+ 7 channel laser: no laser

selected

52 BNC3 source from backplane
TTL5 (stage sync trigger) - BNC3 3.31+ stage sync access

53 BNC1 and BNC6 selected,
turned on by cell 10 - BNC1-7 3.35+ 7 channel laser: lasers #1 and

#6 selected

54 BNC1 and BNC4 and BNC6
selected, turned on by cell 10 - BNC1-7 3.35+ 7 channel laser: lasers #1 and

#4 and #6 selected

55 BNC1 and BNC4 selected,
turned on by cell 10 - BNC1-7 3.37+ 7 channel laser: lasers #1 and

#4 selected

56 BNC2 and BNC5 selected,
turned on by cell 10 - BNC1-7 3.37+ 7 channel laser: lasers #2 and

#5 selected

57 BNC3 and BNC6 selected,
turned on by cell 10 - BNC1-7 3.37+ 7 channel laser: lasers #3 and

#6 selected

58 BNC1 and BNC5 selected,
turned on by cell 10 - BNC1-7 3.37+ 7 channel laser: lasers #1 and

#5 selected

59 BNC2 and BNC6 selected,
turned on by cell 10 - BNC1-7 3.37+ 7 channel laser: lasers #2 and

#6 selected

Accessing outputs over serial

Most often the binary values of the programmable cells are used as digital signals on the physical
connectors. However, the output of the programmable cells can also be read using a serial command.
This may be useful, for example, if a counter has been created and high-level software needs to know
the counter value. Likewise, the value of the physical I/Os can also be read. Users of these commands
should understand that the values may be changing rapidly, and the commands only return a single-
time snapshot of the state.

Use the [Addr#]RDADC Z? command to access the 16-bit unsigned integer corresponding to the



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

output values of the 16 logic cells (addresses 1-16). The output of cell 1 is the LSB and the output of
cell 16 is the MSB. As of v3.27 you can use the [Addr#]RDADC F? command to access the output
values of the upper 16 logic cells (addresses 17-32, which cells are not present in the default builds).

[Addr#]RDADC X? returns the value of the front panel I/Os, with LSB corresponding to BNC #1.
Floating inputs read as a logic low because board has a pull-down resistor to ground.

[Addr#]RDADC Y? returns the value of the Tiger backplane I/Os, with LSB corresponding to TTL0.
Floating inputs read as logic high because the board has a pull-up resistor to 3.3V.

Accessing cell state over serial

Flip-flops, one-shots, and delay cells all have state, which refers to the D-flop output (high or low) and
the current clock counter value in one-shot and delay elements (counter decreases with each clock).
Generally the logic cell state is not manipulated directly but there is a mechanism to do so if required.
Note that cell state is not the same as the binary output value which can be accessed using
[Addr#]RDADC Z?.

Use the HOME <axis> or ! <axis> command to clear the state of all cells, e.g. ! E.

The command CCA F can be used to read or write the state of the currently-selected cell according to
the axis pointer. The state of flip-flops has value either 0 or 1. The state of one-shots and delay cells is
the internal counter if active (the counter decreases until 0 with successive clocks) or 0 if the one-shot
or delay isn't currently triggered. For example, if cell 11 contains a D-flop then its state (0 or 1) can be
read by first executing M E=11 followed by [Addr#]CCA F?. Likewise, the D-flop state (and hence
output value) could be set high by executing M E=11 followed by [Addr#]CCA F=1.

Changing trigger source

By default the evaluation cycle happens on an internal 4kHz clock. However, the evaluation cycle can
be triggered by hardware interrupt instead. For diSPIM, the micro-mirror card generates trigger
signals for cameras and lasers which are controlled by PLC outputs. To maintain synchronization, the
PLC trigger source is set to be the 4kHz clock of the micro-mirror card.

There is an option for the user to provide a clock for the evaluation cycle on the first BNC front panel
connector. When changing to this trigger source, BNC input 1 is set to be an input automatically and
cannot be changed to an output until the trigger source has been changed.

To change trigger mode, use the PM command, which is axis-specific, to change the trigger source as
desired. For example, PM E=1 would be used for diSPIM with the micro-mirror card master clock is on
backplane C7. The table below contains a list of trigger source codes.

Code Trigger source Notes
0 internal 4kHz clock default
1 Backplane C7 for diSPIM, from micro-mirror card (P3.0)
2 Backplane C13 (TTL5)
3 Backplane C14 (TTL7)
4 BNC input 1



2024/03/08 11:53 11/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

Save card settings

Like other cards, the save settings command ([Addr#]SS Z) can be sent to the programmable logic
card to save all settings in nonvolatile memory where it will be restored when the controller is
powered on the next time. Cell states (e.g. flop values) are not remembered, but the following
settings are remembered using SS Z:

logic cell types, configuration, and input assignments
I/O types and source addresses
card trigger source

Example Logic

Toggle

A toggle output changes output state once per clock input, making it a divide-by-2. There are multiple
ways of implementing a toggle using the available logic structures. One is to use a D-flop with input
connected to the inverted version of its own output. Another is to use a 2-input XOR with one input
connected to logic high (address 64) and the other connected to its own output. Finally, you can use a
2-input OR with one input connected to logic low (address 0) and the other connected to the inverted
version of its own output.

Simple counter

A simple N-bit counter consists of N cascaded toggle flops. Each toggle flop is simple in structure; a
counter is formed by cascading toggle flops, with the output of each cell acting as the clock for the
following cell. The figure below shows this for a 3-bit up counter. This is knows as a “ripple counter”
because the lower order bit has to toggle before the next bit can flip. In digital logic there is a
transient time where the observed count will be inaccurate while the outputs are changing. However,
in the PLC, as long as each higher-order toggle flop is in a higher-number cell then the counter will act
as a synchronous counter because of the sequential evaluation of cells' logic value without any output
until the next evaluation cycle. To make a down counter, invert the polarity of the clock inputs.

Clock

To create a free-running clock with user-selectable period and duty cycle you can combine two non-
retriggerable one-shot cells. The first cell's trigger is connected to logic high, but because it is non-
retriggerable it will simply trigger itself whenever it has, thus outputting a pulse once per delay
period. That pulse triggers a second one-shot which generates the clock output whose duration sets
the time the output signal is high (i.e. the duty cycle is the ratio of the one-shot duration with the
delay period). From the 4kHz internal clock it is possible to generate up to 2kHz clock by this means.



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

Script: clock signal on BNC3 output

// generate a clock signal based on the internal 4kHz clock, e.g. for
triggering a camera
// currently hard-codes using cells 1 and 2 and BNC output #3
 
// variables to be edited by user
double clockFrequencyHz = 100;  // clock frequency in Hertz
double clockDutyCycle = 0.5;     // should be between 0 and 1 exclusive
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propUpdates = "EditCellUpdateAutomatically";
String valNo = "No";
String valOneShotNRT = "14 - one shot (NRT)";
int addrInvert= 64;
int addrEdge = 128;
double ticsPerSecond = 4000.0;
int addrOutputBNC3 = 35;
int addrDelayNRT = 1;
int addrOneShot = 2;
 
// figure out the cycle period and high period in terms of PLC "tics"
(4kHz)
int clockPeriodTics = (int) (ticsPerSecond/clockFrequencyHz + 0.5);
print("have " + (clockPeriodTics-1) + " (+1) tics in one-shot for
actual frequency of " + ticsPerSecond/(clockPeriodTics));
int clockHighTics = (int) (clockPeriodTics * clockDutyCycle);
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// do programming of one-shot and delay cells
mmc.setProperty(plcName, propPosition, addrDelayNRT);
mmc.setProperty(plcName, propCellType, valOneShotNRT);
mmc.setProperty(plcName, propCellConfig, (clockPeriodTics-1));
mmc.setProperty(plcName, propCellInput1, addrInvert + addrEdge);  //
trigger cell as fast as we can, but NRT prevents re-triggering when
active
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock on every tic
 
mmc.setProperty(plcName, propPosition, addrOneShot);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 13/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

mmc.setProperty(plcName, propCellType, valOneShotNRT);
mmc.setProperty(plcName, propCellConfig, clockHighTics);
mmc.setProperty(plcName, propCellInput1, addrDelayNRT);  // trigger
cell as fast as we can, but NRT prevents re-triggering when active
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock on every tic
 
// connect to BNC output
mmc.setProperty(plcName, propPosition, addrOutputBNC3);
mmc.setProperty(plcName, propCellConfig, addrOneShot);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

Fixed number of pulses from trigger

A single trigger signal can be used to generate a train of pulses with fixed period. This might be useful
to take the stage synchronization pulse and generate a series of camera triggers.

Script: fixed number of pulses after initial trigger

// Generate a user-specified number of pulses with user-specified
period and duration
// upon receipt of a single rising edge trigger.  The trigger here is
the stage sync signal.
 
// variables to be edited by user
int numPulses = 25;          // number of pulses to send
double pulsePeriodMs = 10.0; // period of pulses in milliseconds
double pulseHighMs = 1.0;    // time in milliseconds that the pulse is
high for, should be less than pulse period
int addrOutputBNC1 = 33;     // address 33 is BNC#1 on PLC front panel
int addrStageSync = 46;      // address 46 is TTL5 on Tiger backplane =
stage sync signal
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propUpdates = "EditCellUpdateAutomatically";
String valNo = "No";
String valDFlop = "1 - D flop";

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

String valOneShotNRT = "14 - one shot (NRT)";
int addrZero = 0;
int addrInvert = 64;
int addrEdge = 128;
double ticsPerMs = 4.0;
int addrActive = 1;
int addrPeriod = 2;
int addrPulse = 3;
int addrCounter = 4;
 
// figure out the cycle period and high period in terms of PLC "tics"
(4kHz)
int pulsePeriodTics = (int) (ticsPerMs * pulsePeriodMs + 0.5);
int pulseHighTics = (int) (ticsPerMs * pulseHighMs + 0.5);
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// force BNC output to be low so no transients seen
mmc.setProperty(plcName, propPosition, addrOutputBNC1);
mmc.setProperty(plcName, propCellConfig, addrZero);
 
// D-flop registers when master trigger signal (from stage) arrives
// we reset this once we have output the desired number of pulses
mmc.setProperty(plcName, propPosition, addrActive);
mmc.setProperty(plcName, propCellType, valDFlop);
mmc.setProperty(plcName, propCellInput1, addrInvert);  // connect D
input to logic 1
mmc.setProperty(plcName, propCellInput2, addrEdge + addrStageSync);  //
trigger/clock with stage
mmc.setProperty(plcName, propCellInput3, addrEdge + addrInvert +
addrCounter);  // reset once counter is done
 
// one-shot NRT to keep period, clocked every tic and immediately set
//    (but initially kept reset until D-flop captures pulse)
mmc.setProperty(plcName, propPosition, addrPeriod);
mmc.setProperty(plcName, propCellType, valOneShotNRT);
mmc.setProperty(plcName, propCellConfig, pulsePeriodTics - 1);
mmc.setProperty(plcName, propCellInput1, addrInvert + addrEdge);  //
trigger every time
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock at 4kHz
mmc.setProperty(plcName, propCellInput3, addrInvert + addrActive);  //
keep reset unless we got triggered
 
// output pulse of the desired duration
mmc.setProperty(plcName, propPosition, addrPulse);
mmc.setProperty(plcName, propCellType, valOneShotNRT);
mmc.setProperty(plcName, propCellConfig, pulseHighTics);
mmc.setProperty(plcName, propCellInput1, addrEdge + addrPeriod);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 15/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock at 4kHz
 
// one-shot to track how many pulses we have remaining
mmc.setProperty(plcName, propPosition, addrCounter);
mmc.setProperty(plcName, propCellType, valOneShotNRT);
mmc.setProperty(plcName, propCellConfig, numPulses-1);  // I don't
fully understand why the -1 is needed ;-)
mmc.setProperty(plcName, propCellInput1, addrStageSync);
mmc.setProperty(plcName, propCellInput2, addrEdge + addrPulse);
 
// connect to BNC output
mmc.setProperty(plcName, propPosition, addrOutputBNC1);
mmc.setProperty(plcName, propCellConfig, addrPulse);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

Output the stage sync signal

For stage scanning there is an internal signal generated when the stage is scanning, and commonly
the rising edge can be used to trigger other logic (e.g. camera that is free-running during the stage
scan). This script configures the internal signal to be immediately output on BNC #3 of the PLC. Note
that this stage sync signal requires a motorized 2-axis card with an appropriate jumper in place and
also firmware with the SCAN_MODULE firmware (some documentation at
http://asiimaging.com/docs/scan_module but needs to be augmented). 13)

Script: Stage sync signal on BNC

// output the internal stage sync signal on BNC output #3
// stage sync signal goes high when the stage passes the start position
and falls when it passes the end position
// (set up start and stop positions using SCANR command X and Y
parameters, then use SCAN command to initiate)
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellConfig = "EditCellConfig";
int addrOutputBNC3 = 35;
int addrStageSync = 46;  // TTL5 on Tiger backplane = stage sync signal
 
// connect to BNC output
mmc.setProperty(plcName, propPosition, addrOutputBNC3);
mmc.setProperty(plcName, propCellConfig, addrStageSync);

http://asiimaging.com/docs/scan_module
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

diSPIM 2 laser control

Say we want to use two lasers with diSPIM where the laser color is changed on alternate volumes. The
micro-mirror drive card of the Tiger outputs are a single laser trigger and a TTL side indicator. For two
lasers where the laser is toggled ever volume, we to route the laser trigger to one laser for the first
volume and the second laser on the next volume. This is accomplished by using a toggle flop (1-bit
counter) that is toggled after every volume. This requires 3 logic cells, arranged as shown here. The
BNC connectors on the front of the PLC provide the required additional physical connectors.

If instead we want to toggle the laser every slice, the logic is almost identical except that the toggle
counter is connected to the laser trigger. Some additional logic could be added to reset the counter
between stacks in case an odd number of slices is used.

Micro-Manager ASIdiSPIM plugin

The Micro-Manager ASIdiSPIM plugin uses the PLC for outputting the camera and laser triggers. Here
is the usage of the internal cells:

Cell Use
1 acquisition flag
2 laser counter clock source
3 laser counter
4 laser counter
5 laser counter (needed for 3 channels only)
6
7
8 shutter flag
9
10 laser on
11
12 side select switch
13 BNC5 laser
14 BNC6 laser
15 BNC7 laser
16 BNC8 laser

diSPIM pulse after acquisition

An end user wanted to trigger another piece of equipment a certain time after the conclusion of the
diSPIM acquisition in Micro-Manager. We use the acquisition flag that the Micro-Manager plugin sets
high before acquisition and low after it is completed (there may be a variable lag of 0.3-0.8 second
from when the hardware is actually finished). We use that flag to clock a delay cell which in turn
controls a one-shot to keep the trigger output high for a specified duration. This script saves the



2024/03/08 11:53 17/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

settings to the controller so it should only need to be run once unless the delay is changed, firmware
is updated, or another script using cells 6 or 7 or output #3 is run.

Script: diSPIM pulse after acquisition

// variables to be edited by user
delayInSeconds = 2;     // can be no more than 16.3
durationInSeconds = 1;  // can be no more than 16.3
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propUpdates = "EditCellUpdateAutomatically";
String propSaveSettings = "SaveCardSettings";
String valNo = "No";
String valDelay = "15 - delay (NRT)";
String valOneShot = "14 - one shot (NRT)";
String valSaveSettings = "Z - save settings to card (partial)";
int addrAcqFlag = 1;
int addrDelayCell = 6;
int addrOneShotCell = 7;
int addrOutput3 = 35;
int addrInvert= 64;
int addrEdge = 128;
int ticsPerSecond = 4000;
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// program cell 6 as delay with user-specified value and triggered
every clock
mmc.setProperty(plcName, propPosition, addrDelayCell);
mmc.setProperty(plcName, propCellType, valDelay);
mmc.setProperty(plcName, propCellConfig, ticsPerSecond*delayInSeconds);
mmc.setProperty(plcName, propCellInput1, addrAcqFlag + addrInvert +
addrEdge);
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock on every tic
mmc.setProperty(plcName, propCellInput3, addrAcqFlag + addrEdge);  //
reset when acquisition starts
 
// program cell 7 as a one-shot
mmc.setProperty(plcName, propPosition, addrOneShotCell);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

mmc.setProperty(plcName, propCellType, valOneShot);
mmc.setProperty(plcName, propCellConfig,
ticsPerSecond*durationInSeconds);
mmc.setProperty(plcName, propCellInput1, addrDelayCell);
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock on every tic
mmc.setProperty(plcName, propCellInput3, addrAcqFlag + addrEdge);  //
reset when acquisition starts
 
// output #3 reflects cell 6
mmc.setProperty(plcName, propPosition, addrOutput3);
mmc.setProperty(plcName, propCellConfig, addrOneShotCell);
 
// save settings
mmc.setProperty(plcName, propSaveSettings, valSaveSettings);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

iSPIM pulse during acquisition

An end user wanted to trigger another piece of equipment in the middle of a single-view (iSPIM)
acquisition in Micro-Manager. This trigger needed to occur a certain time after acquisition began,
have a specified duration, and not occur again until the next acquisition. The strategy is to use the
Camera A trigger to initiate a delay element which in turn triggers a one-shot. The initial logic element
is a D-flop to generate a rising edge on its output one time only until it is reset by the acquisition flag.
This script saves the settings to the controller so it should only need to be run once unless the delay
is changed, firmware is updated, or another script using cells 6 or 7 or 9 or output #3 is run.

Script: iSPIM pulse during acquisition

// variables to be edited by user
double delayInSeconds = 3.0;     // can be no more than 16.3
double durationInSeconds = 1.0;  // can be no more than 16.3
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propUpdates = "EditCellUpdateAutomatically";
String propSaveSettings = "SaveCardSettings";
String valNo = "No";

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 19/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

String valDFlop = "1 - D flop";
String valDelay = "15 - delay (NRT)";
String valOneShot = "14 - one shot (NRT)";
String valSaveSettings = "Z - save settings to card (partial)";
int addrAcqFlag = 1;
int addrOnceCell = 6;
int addrDelayCell = 7;
int addrOneShotCell = 9;
int addrOutput3 = 35;
int addrCameraA = 41;
int addrInvert= 64;
int addrEdge = 128;
int ticsPerSecond = 4000;
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// program cell 6 as a one-time-triggered flop that stays high until
reset when acquition starts
mmc.setProperty(plcName, propPosition, addrOnceCell);
mmc.setProperty(plcName, propCellType, valDFlop);
mmc.setProperty(plcName, propCellInput1, addrInvert);   // input is
logic 1
mmc.setProperty(plcName, propCellInput2, addrCameraA);  // clock with
CamA
mmc.setProperty(plcName, propCellInput3, addrAcqFlag + addrEdge);  //
reset when acquisition starts
 
// program cell 7 as delay with user-specified value
mmc.setProperty(plcName, propPosition, addrDelayCell);
mmc.setProperty(plcName, propCellType, valDelay);
mmc.setProperty(plcName, propCellConfig,
(int)(ticsPerSecond*delayInSeconds));
mmc.setProperty(plcName, propCellInput1, addrOnceCell + addrEdge);  //
trigrer when other flop goes high
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);    //
clock on every tic
mmc.setProperty(plcName, propCellInput3, addrAcqFlag + addrEdge);   //
reset when acquisition starts
 
// program cell 9 as a one-shot to stay high the user-specified
duration
mmc.setProperty(plcName, propPosition, addrOneShotCell);
mmc.setProperty(plcName, propCellType, valOneShot);
mmc.setProperty(plcName, propCellConfig,
(int)(ticsPerSecond*durationInSeconds));
mmc.setProperty(plcName, propCellInput1, addrDelayCell);           //
trigger when delay is finished
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);   //
clock on every tic

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

mmc.setProperty(plcName, propCellInput3, addrAcqFlag + addrEdge);  //
reset when acquisition starts
 
// output #3 reflects cell 9
mmc.setProperty(plcName, propPosition, addrOutput3);
mmc.setProperty(plcName, propCellConfig, addrOneShotCell);
 
// save settings
mmc.setProperty(plcName, propSaveSettings, valSaveSettings);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

diSPIM multiple lasers

An end user wanted to illuminate one one side of the diSPIM with 2 out of the 4 laser lines (both lasers
on simultaneously) and then use the other two lasers for illuminating on the second side. First we use
two cells as 4-input AND gates with proper inputs to produce “laser on” signals at the appropriate
times. Then we make the 4 laser output connectors reflect the binary values of those AND gates.

Here is the Beanshell script to do this using the Micro-Manager device adapter's properties. Note
that as of firmware v3.19 this script is not needed; simply use preset 31.

Script: diSPIM multiple lasers

// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellCellConfig";
String valAND4 = "10 - 4-input AND";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propCellInput4 = "EditCellInput4";
String propUpdates = "EditCellUpdateAutomatically";
String valNo = "No";
int addrLaserOn = 42;
int addrLaserSide = 44;
int addrInvert = 64;
int addrSideAGate = 6;
int addrSideBGate = 7;
int addrShutterOpen = 8;
int addrOutput5 = 37;
int addrOutput6 = 38;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 21/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

int addrOutput7 = 39;
int addrOutput8 = 40;
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// do programming of 2 logic cells for two laser on/off signals
mmc.setProperty(plcName, propPosition, addrSideAGate);
mmc.setProperty(plcName, propCellType, valAND4);
mmc.setProperty(plcName, propCellInput1, addrLaserOn);
mmc.setProperty(plcName, propCellInput2, addrShutterOpen);
mmc.setProperty(plcName, propCellInput3, addrLaserSide + addrInvert);
mmc.setProperty(plcName, propCellInput4, addrInvert);
 
mmc.setProperty(plcName, propPosition, addrSideBGate);
mmc.setProperty(plcName, propCellType, valAND4);
mmc.setProperty(plcName, propCellInput1, addrLaserOn);
mmc.setProperty(plcName, propCellInput2, addrShutterOpen);
mmc.setProperty(plcName, propCellInput3, addrLaserSide);
mmc.setProperty(plcName, propCellInput4, addrInvert);
 
// do programming of laser outputs
mmc.setProperty(plcName, propPosition, addrOutput5);
mmc.setProperty(plcName, propCellConfig, addrSideAGate);
mmc.setProperty(plcName, propPosition, addrOutput6);
mmc.setProperty(plcName, propCellConfig, addrSideBGate);
mmc.setProperty(plcName, propPosition, addrOutput7);
mmc.setProperty(plcName, propCellConfig, addrSideAGate);
mmc.setProperty(plcName, propPosition, addrOutput8);
mmc.setProperty(plcName, propCellConfig, addrSideBGate);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

SPIM reduce sheet width for portion of stack

We had a customer imaging zebrafish and wanting to avoid directing the laser into their eyes, so they
wanted to narrow the width of the light sheet for a particular section of the z-stack. This was
implemented on the PLC by selectively gating some laser-on pulses.

Here is a

PDF
with the basic concept. Below is the Beanshell script for use in Micro-Manager. It uses cells 6, 7, 9,
and 11 additional to what are typically used by Micro-Manager plugin. The script makes the
simplifying assumption that you aren't doing multiple timepoints, multiple positions, or multiple
channels. If any of those are true then it will need to be tweaked to appropriately reset the delay and
one-shot cells that figure out when the “special” time is.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://asiimaging.com/docs/_media/plceyegatescan.pdf


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

Script: reduce sheet width for portion of stack

// these 4 values are intended to be edited by the user
int slicesBeforeSpecial = 2;   // how many slices before starting the
shorter scan region
int slicesSpecial = 1;         // how many slices in the eye region
with the shorter scan
double msCutFromSlice = 0;  // how many ms to cut from the first part
of the scan
double msShortSlice = 3;        // how many ms to leave the laser on
for the shorter scan region
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String valLUT3 = "3 - 3-input LUT";
String valOneshotNRT = "14 - one shot (NRT)";
String valDelayNRT = "15 - delay (NRT)";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propCellInput4 = "EditCellInput4";
String propUpdates = "EditCellUpdateAutomatically";
String valNo = "No";
int addrTTL1 = 42;
int addrAcq = 1;
int addrInvert = 64;
int addrEdge = 128;
int addrDelayGate = 6;
int addrGate = 7;
int addrDelayEyes = 9;
int addrEyes = 11;
int addrSlicesTrig = 16;
int addrLaser = 10;
int laserLookupTable = 216;
 
int ticsBeforeGate = Math.round(msCutFromSlice*4);
int ticsGate = Math.round(msShortSlice*4);
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// do programming of 5 logic cells
mmc.setProperty(plcName, propPosition, addrDelayEyes);
mmc.setProperty(plcName, propCellType, valDelayNRT);
mmc.setProperty(plcName, propCellConfig, slicesBeforeSpecial);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+math
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+math
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 23/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

mmc.setProperty(plcName, propCellInput1, addrAcq + addrEdge);
mmc.setProperty(plcName, propCellInput2, addrTTL1 + addrInvert +
addrEdge);
mmc.setProperty(plcName, propCellInput3, addrAcq + addrInvert);
 
mmc.setProperty(plcName, propPosition, addrEyes);
mmc.setProperty(plcName, propCellType, valOneshotNRT);
mmc.setProperty(plcName, propCellConfig, slicesSpecial);
mmc.setProperty(plcName, propCellInput1, addrDelayEyes);
mmc.setProperty(plcName, propCellInput2, addrTTL1 + addrInvert +
addrEdge);
mmc.setProperty(plcName, propCellInput3, addrAcq + addrInvert);
 
mmc.setProperty(plcName, propPosition, addrDelayGate);
mmc.setProperty(plcName, propCellType, valDelayNRT);
mmc.setProperty(plcName, propCellConfig, ticsBeforeGate);
mmc.setProperty(plcName, propCellInput1, addrTTL1);
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);
mmc.setProperty(plcName, propCellInput3, addrTTL1 + addrInvert +
addrEdge);
 
mmc.setProperty(plcName, propPosition, addrGate);
mmc.setProperty(plcName, propCellType, valOneshotNRT);
mmc.setProperty(plcName, propCellConfig, ticsGate);
mmc.setProperty(plcName, propCellInput1, addrDelayGate);
mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);
mmc.setProperty(plcName, propCellInput3, addrTTL1 + addrInvert +
addrEdge);
 
mmc.setProperty(plcName, propPosition, addrLaser);
mmc.setProperty(plcName, propCellType, valLUT3);
mmc.setProperty(plcName, propCellConfig, laserLookupTable);
mmc.setProperty(plcName, propCellInput1, addrEyes);
mmc.setProperty(plcName, propCellInput2, addrGate);
mmc.setProperty(plcName, propCellInput3, addrTTL1);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

Constant-value Output

One customer wanted to set the value of output #3 to be continuously high for the experiment.

Script: output 3 always high

// variables that should not need to be edited by user
// would like to define these variables as final, but this is
//  not amenable to script which can run multiple times



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellConfig = "EditCellConfig";
String propSaveSettings = "SaveCardSettings";
String valSaveSettings = "Z - save settings to card (partial)";
int addrOutput3 = 35;
int addrHigh= 64;
int addrLow = 0;
 
 
// output #3 assigned to be always high
mmc.setProperty(plcName, propPosition, addrOutput3);
mmc.setProperty(plcName, propCellConfig, addrHigh);  // output to be
high
//mmc.setProperty(plcName, propCellConfig, addrLow);  // output to be
low
 
// save settings
mmc.setProperty(plcName, propSaveSettings, valSaveSettings);

Conditional Synchronized Output Pulse

One customer wanted to trigger a laser for a set time synchronized to the camera trigger signal, but
only if a condition had been met (specifically a trigger on the controller backplane indicating the laser
should be fired).

Script: output timed pulse synchronized to input

// output a timed pulse coincident with rising edge of input#1 if and
only if input#2 has seen a rising edge since the last pulse
// use to synchronize the output with input#1
// currently set to output BNC#3 with input#1 of BNC#1 and input#2 of
backplane TTL1
// example use case: fire laser (output) when the camera trigger is
just starting (input#1) if we are ready for it (input#2)
 
// variables to be edited by user
outputDurationInMs = 25;  // can be no more than 16.3 seconds with
normal 4kHz clock
int addrOutput = 35;  // 35 corresponds to BNC#3, change if want
different output
int addrInput1 = 33;   // 33 corresponds to BNC#1, change if want
different input
int addrInput2 = 42;   // 42 corresponds to TTL1 on backplane = laser
shutter signal
 
// variables that should not need to be edited by user
// would like to define these variables as final, but this is

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 25/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

//  not amenable to script which can run multiple times
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propUpdates = "EditCellUpdateAutomatically";
String valNo = "No";
String valDFlop = "1 - D flop";
String valAND2 = "5 - 2-input AND";
String valOneShot = "14 - one shot (NRT)";
String valIOInput = "0 - input";
String valIOPushPull = "2 - output (push-pull)";
int ticsPerMs = 4;
int addrInvert= 64;
int addrEdge = 128;
int addrInput2Capture = 1;
int addrBothInputs = 2;
int addrOneShotCell = 3;
 
 
// figure out the high period in terms of PLC "tics" (4kHz)
int outputDurationTics = (int) (outputDurationInMs*ticsPerMs + 0.5);
 
// turn off updates to speed communication
String valUpdatesOriginal = mmc.getProperty(plcName, propUpdates);
mmc.setProperty(plcName, propUpdates, valNo);
 
// use D-flops to latch rising edges of two inputs
// (reset once output pulse starts)
mmc.setProperty(plcName, propPosition, addrInput2Capture);
mmc.setProperty(plcName, propCellType, valDFlop);
mmc.setProperty(plcName, propCellInput1, addrInvert);  // connect D
input to logic 1
mmc.setProperty(plcName, propCellInput2, addrEdge + addrInput2);
mmc.setProperty(plcName, propCellInput3, addrEdge + addrOneShotCell);
// reset once output pulse starts
 
// use AND to combine edge of input#1 with latched signal from input#2
mmc.setProperty(plcName, propPosition, addrBothInputs);
mmc.setProperty(plcName, propCellType, valAND2);
mmc.setProperty(plcName, propCellInput1, addrEdge + addrInput1);
mmc.setProperty(plcName, propCellInput2, addrInput2Capture);
 
// use non-retriggerable one-shot to output pulse
mmc.setProperty(plcName, propPosition, addrOneShotCell);
mmc.setProperty(plcName, propCellType, valOneShot);
mmc.setProperty(plcName, propCellConfig, outputDurationTics);
mmc.setProperty(plcName, propCellInput1, addrBothInputs);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

mmc.setProperty(plcName, propCellInput2, addrInvert + addrEdge);  //
clock on every tic
 
// make sure inputs are set as inputs
mmc.setProperty(plcName, propPosition, addrInput1);
mmc.setProperty(plcName, propCellType, valIOInput);
mmc.setProperty(plcName, propPosition, addrInput2);
mmc.setProperty(plcName, propCellType, valIOInput);
 
// connect one shot to output and set as output
mmc.setProperty(plcName, propPosition, addrOutput);
mmc.setProperty(plcName, propCellType, valIOPushPull);
mmc.setProperty(plcName, propCellConfig, addrOneShotCell);
 
// restore updates
mmc.setProperty(plcName, propUpdates, valUpdatesOriginal);

Blinking outputs for testing

To check functionality of the outputs and receipt of the input trigger signal it is convenient to set the
8 outputs corresponding to a digital counter which is advanced every evaluation cycle. Because the
evaluation cycle is nominally 4 kHz visual inspection is easiest if only the highest bits of the counter
are displayed. This is accomplished by sending the following two serial commands to re-configure the
cells to a useful test mode:

6 CCA X=4 (sets cells 1-16 as a digital counter advanced each evaluation cycle)

6 CCA X=19 (sets BNC outputs 1-8 to correspond to cells 9-16)

Print internal configuration

The script below outputs the internal configuration of the PLC

Script: print internal configuration

// print out to the terminal the internal configuration of the PLC
String plcName = "PLogic:E:36";
String propPosition = "PointerPosition";
String propCellType = "EditCellCellType";
String propCellConfig = "EditCellConfig";
String propCellInput1 = "EditCellInput1";
String propCellInput2 = "EditCellInput2";
String propCellInput3 = "EditCellInput3";
String propCellInput4 = "EditCellInput4";
 
for (int cellNr=1; cellNr<=16; cellNr++) {
   mmc.setProperty(plcName, propPosition, cellNr);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string


2024/03/08 11:53 27/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

   print("Cell " + cellNr + ":");
   print("  type: " + mmc.getProperty(plcName, propCellType));
   print("  config: " + mmc.getProperty(plcName, propCellConfig));
   print("  inputs: " + mmc.getProperty(plcName, propCellInput1) + ", "
+
   mmc.getProperty(plcName, propCellInput2) + ", " +
   mmc.getProperty(plcName, propCellInput3) +  ", " +
   mmc.getProperty(plcName, propCellInput4) );
}
 
for (int ioNr=1; ioNr<=16; ioNr++) {
   mmc.setProperty(plcName, propPosition, ioNr + 32);
   print("I/O " + ioNr + ":");
   print("  type: " + mmc.getProperty(plcName, propCellType));
   print("  addr: " + mmc.getProperty(plcName, propCellConfig));
}

Hardware Specifications

Input/Output Impedance

As described above the BNC impedance values for Rev B boards are as follows: input: 27 kOhm, open-
drain output: 43 ohm in series, push-pull output: approximately 50 ohm The backplane I/Os are
implemented using pull-up logic with 10 kOhm resistors on the board. The front panel I/Os are
protected with 43 ohm in series and a 27 kOhm to ground (100 ohm and 10 kOhm in Rev A, except for
a very few early cards with the 10 kOhm resistor to 5V instead).

Logic Thresholds

Push-pull output guaranteed to be < 0.44 V logic low (typically < 0.1 V) and > 4.25 V logic high
(typically > 4.9 V) with 5.0 V output level selected with a jumper as per default.

Guaranteed input thresholds are < 1.0 V for logic low and > 2.3 V for logic high.

diSPIM backplane

The standard TG-1000 backplane is configured as follows for diSPIM:

PLC Address Signal6 diSPIM use
41 TTL0 Camera Path A
42 TTL1 Laser 0 (laser trigger)
43 TTL2 Camera Path B
44 TTL3 Laser 1 (laser side)
45 TTL4 Piezo Path A



Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

PLC Address Signal6 diSPIM use
46 TTL5 Trigger Input
47 TTL6 Piezo Path B
48 TTL7 Reserved

Laser 0 and Laser 1 outputs behave according to a firmware setting (LED Z). This setting is usually
changed by the user to match the laser control configuration they are using. The outputs can be set
as:

individual laser on/off for the two paths
single laser trigger with side switch (Laser 0 is laser on/off for both sides and Laser 1 is high
when Path B is active) (default)
side indication only (Laser 0 high when Path A is active, Laser 1 high when Path B is active)

Implementation Notes

Originally it was hoped to run the evaluation cycle at a very fast update rate, e.g. at 100kHz, so that
any propagation time would be negligible. However, that proved unfeasible. Instead we provide a
mechanism to slave the outputs to another card's clock.

Every indication is that sustained 4kHz operation is possible for all possible logic cell assignments (i.e.
<0.25 ms per cycle), but a rigorous evaluation has not been performed. With all 4-input LUTs it took
0.12ms to do the evaluation cycle, and with all constants it took 0.07ms. With 32 programmable cells,
all 4-LUTs, it took 0.20ms, indicating that about 0.04ms is overhead and about 5us per cell. Same
experiment with constants, the time is about 0.03ms overhead and 5us per cell. Dec 2018 in
experiment with diSPIM shutter use of PLogic card using Micro-Manager it was found to require
~0.13ms for evaluation.

Outputs can be used immediately when evaluating subsequent cells. This makes it possible to
implement some functionality with less delay (e.g.the ripple counter would not have any effective
“ripple” time, just a single cycle, as long as the higher-order bits are placed in cells evaluated after
the lower-order bits). However, note that the logic's behavior can depend on cell ordering. In each
evaluation cycle, cell 1 is evaluated first, then cell 2, and so on.

Additional cell types can easily be added.

Additional presets can easily be added.

Additional programmable cells can also be added but proceed with caution to make sure an
evaluation cycle can be completed in the allotted time. As many as 32 cells may be doable with
0.25ms clock rate, and we have pre-allocated addresses for 32 cells. The default build includes 16
cells but a build with 24 cells is available as of March 2019; contact ASI if you need it.

Serial Command Cheatsheet

The follow table assumes that the axis letter for the PLogic card is E. Axis specific commands have the
axis character highlighted in bold.

This a Tiger card so don't forget to prefix the card address to the command. For instance, if the card



2024/03/08 11:53 29/30 Tiger Programmable Logic Card (TGPLC)

Applied Scientific Instrumentation - http://asiimaging.com/docs/

address is 6, use 6CCA Z=64 to set the current cell configuration to 64. The first two entries in the
table are not card addressed, so M E=2 moves the pointer position to cell 2.

PLogic Serial Commands
Property Set Get Notes
Clear All Cell States ! E - Not card addressed
Pointer Position M E=# W E Not card addressed
Trigger Source PM E=# PM E? Clock source
Cell Configuration CCA Z=# CCA Z? Value of current cell
Cell State CCA F=# CCA F? State of current cell
Cell Type CCA Y=# CCA Y? Delay, one shot, etc
Cell Input 1 CCB X=# CCB X? Edit input value 1
Cell Input 2 CCB Y=# CCB Y? Edit input value 2
Cell Input 3 CCB Z=# CCB Z? Edit input value 3
Cell Input 4 CCB F=# CCB F? Edit input value 4
Card Preset CCA X=# CCA X? Set card preset
Lower Cells Output State - RA Z? Cells 1-16
Upper Cells Output State - RA F? Cells 17-32
Front Panel Output State - RA X? Front panel IO
Back Plane Output State - RA Y? Tiger back plane
tiger, manual, plc
1)

The number of logic cells is easily extendable, but then longer evaluation times are required. It may
be beneficial to let the user say how many logic cells are used.
2)

It is easily extendable to 6 inputs, but 4 is enough for logic cells we have now.
3)

not strictly simultaneous but within 0.3us of the trigger (had 0.3 with internal triggering, measured a
bit less than 1 us with with external)
4)

again, not strictly synchronously but within 0.5us of the trigger
5)

An additional 8 backplane connectors are reserved but not used at present.
6)

Really the OR gate's address + 128 will be assigned as the flip-flop's input address, but it is
equivalent in function.
7)

to have the output high for only a single evaluation cycle, connect the delay cell's output to its own
reset input
8)

Prior to v3.05 firmware the BNCs were also inputs by default.
9)

Technically speaking the push-pull buffer is not rated for supply as low as 3.3V but we have never
experienced any problems operating it this way.
10)

Strictly speaking the series resistor mentioned later also is part of the input impedance.
11)

For Rev A boards, the micro-controller itself was set to push-pull output and would drive the BNC
connector through a resistor. For Rev B and later boards, an additional buffer is used in push-pull
mode that is capable of driving a 50ohm load.
12)

Prior to v3.09 BNC3 was set to the equivalent of preset 24 as well

http://asiimaging.com/docs/tag/tiger?do=showtag&tag=tiger
http://asiimaging.com/docs/tag/manual?do=showtag&tag=manual
http://asiimaging.com/docs/tag/plc?do=showtag&tag=plc


Last update: 2024/02/06 14:25 tiger_programmable_logic_card http://asiimaging.com/docs/tiger_programmable_logic_card

http://asiimaging.com/docs/ Printed on 2024/03/08 11:53

13)

Note that there will be 0.25ms jitter because the internal stage sync signal is asychronous but the PLC
is (almost always) sampling/outputing its signals on a 4kHz clock. The corresponding positional jitter
depends on the speed, e.g. at 40 um/s speed the positional jitter will be 0.25ms * 40 um/s = 10nm
which is negligible.

From:
http://asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
http://asiimaging.com/docs/tiger_programmable_logic_card

Last update: 2024/02/06 14:25

http://asiimaging.com/docs/
http://asiimaging.com/docs/tiger_programmable_logic_card

	Tiger Programmable Logic Card (TGPLC)
	Overview
	Programming
	Programming Logic Cells
	Cell codes for use with ''CCA'' and ''CCB'' commands
	Address codes (used with ''CCB''command as well as setting source address for physical I/O)
	Logic gates
	Lookup tables (LUT)
	Flip flops
	One-shot
	Delay

	Configuring Physical I/Os
	I/O type: input, open-drain output, or push-pull output
	Physical I/O source address

	Available Presets
	Accessing outputs over serial
	Accessing cell state over serial
	Changing trigger source
	Save card settings

	Example Logic
	Toggle
	Simple counter
	Clock
	Fixed number of pulses from trigger
	Output the stage sync signal
	diSPIM 2 laser control
	Micro-Manager ASIdiSPIM plugin
	diSPIM pulse after acquisition
	iSPIM pulse during acquisition
	diSPIM multiple lasers
	SPIM reduce sheet width for portion of stack
	Constant-value Output
	Conditional Synchronized Output Pulse
	Blinking outputs for testing
	Print internal configuration

	Hardware Specifications
	Input/Output Impedance
	Logic Thresholds
	diSPIM backplane

	Implementation Notes
	Serial Command Cheatsheet



